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The synthesis of organic compounds with control over stereo-
chemistry is a subject of continuing interest. As olefins are often
key starting materials for the construction of a wide variety of
complex molecules, methods for synthesizing them as pure
geometric isomers are especially important. In this report, we
describe a novel method for the stereoselective synthesis of
functionalized 1,3-butadiene derivatives from cyclobutenones via
a torquoselective electrocyclic ring-opening reaction of cy-
clobutene intermediates.1

This strategy emanates from our recent discovery of the
remarkable effect that silyl substituents have on the ring-opening
reaction of cyclobutenes.2 A silyl substituent at the 3-position
accelerates the electrocyclic reaction, and inter alia promotes
inward rotation despite the resulting steric congestion experienced
in the product. These intriguing effects were explained by the
electron-accepting interactions between the low-lyingσ* orbital
of the silicon atom and the HOMO orbital of the opening
cyclobutene system, possible only in the inward transition state.3

As shown in eq 1, the starting silyl-substituted cyclobutenes

required for this strategy can be conveniently prepared from
cyclobutenones.4,5 Addition of a silyl nucleophile, either in a 1,4-
or 1,2-fashion, provides an efficient route to 3-silyl-1-cyclobutene,
which opens up to isomeric functionalized 1,3-diene.

To effect the 1,4-addition, cyclobutenone2a was treated with
silylcuprate16 at -78 °C for 5 min. The resultant 1,4-adduct was
trapped with acetic anhydride to afford 3-silyl-1-cyclobutene3a
in 83% yield (eq 2).7 When heated in refluxing benzene for 2 h,
3aunderwent a ring-opening reaction with unidirectional rotation
of the substituents. The silyl group rotated inward and the phenyl
group outward8 to furnish the 1-silyl-1,3-diene havingZ-geometry
4a in 99% yield.7 The other stereoisomer was not detected.

To examine the effect of silicon on this rearrangement, substrate
57 was prepared by reaction of (n-Bu)2Cu(CN)Li2 with 2a
followed by treatment with acetic anhydride (eq 3). Unlike3a,

cyclobutene5 was unreactive even in refluxing toluene (110°C).
Ring-opening was observed at 140°C to afford a mixture ofE-6
andZ-6.7 In this case, the butyl and phenyl groups competed for
outward rotation.9 These results clearly demonstrate that the silyl
group of3a plays the dual role of accelerating the ring-opening
reaction and controlling the torquoselectivity.

We surmised that isomeric 3-silyl-1-cyclobutenes such as8
could be obtained by the 1,2-addition of silyllithium reagents to
cyclobutenones. Reaction of cyclobutenone2a with silyllithium
7 in THF at-78 °C followed by treatment with acetic anhydride
did not, in fact, provide the expected cyclobutene derivative.
Instead,2a was directly converted to a 1-silyl-1,3-diene having
Z-geometry (10a) in 87% yield (eq 4).7 The other stereoisomer

was not detected. Stereoselective formation of10awas explained
by assuming that the 1,2-addition of7 to the carbonyl group was
followed by immediate and torquoselective ring-opening of the
1,2-adduct8. The resulting lithium enolate9 was trapped with
acetic anhydride to give10a, a constitutional isomer of4a.

As previously noted, the thermal ring-opening of cyclobutenes
3a is accelerated by the silyl substituent, but still requires heating
at 80°C. Therefore, the direct ring-opening reaction of intermedi-
ate 8 at -78 °C was quite remarkable. As a comparison,
butyllithium was reacted with2a. Unlike 8, the intermediate 1,2-
adduct11 failed to undergo a ring-opening reaction at-78 °C,
and after aqueous workup, cyclobutenol12 was obtained in 84%
yield (eq 5).7 However, when the reaction with butyllithium was
carried out at 0°C, the intermediate 1,2-adduct11 did undergo
spontaneous ring-opening to give 1,3-diene13 (64% yield) after
treatment with acetic anhydride.7 On the other hand, ring-opening
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of the isolated cyclobutenol12 occurred only after heating in
refluxing benzene. Nonconjugatedâ,γ-unsaturated ketone14was
obtained in 96% yield,7 suggesting outward rotation of the
hydroxyl group (eq 6).10 Note this temperature with12 is still
considerably milder than that required for ring-opening of5.

These results demonstrated that an oxy substituent at the
3-position facilitates the ring-opening reaction and favors outward
rotation.11 Both an anionic oxy substituent and a neutral hydroxyl
group are accelerating, but the former has a larger effect.12

Therefore, the remarkably fast ring-opening reaction of inter-
mediate8 can be explained by the combined effects of the
silyl substituent and the anionic oxy substituent, both placed at
the 3-position. Moreover, as the rotational preferences of both
substituents are matched, theZ-isomer 9 is formed exclu-
sively.

When the lithium enolate9 was trapped with chlorosilane, a
1-siloxy-1-silyl-1,3-diene havingZ-geometry (15) was obtained
in 88% yield (eq 7).7 Similar 1,3-dienes havingE-geometry can

be prepared by the allylsilane carbonylation described by Murai
and co-workers.13 The stereochemistry observed in our reaction
is complementary to the carbonylative method.

Other examples of the stereoselective synthesis of 1-silyl-1,3-
dienes4 and10 from cyclobutenones2 are listed in Table 1.7

In conclusion, the highly functionalized 1,3-dienes are syn-
thesized as single isomers via the ring-opening of cyclobutenes,
which are conveniently prepared from cyclobutenones. The
success of the synthetic scheme arises from the substituents
located at the 3-position, which accelerate the ring-opening
reaction and provide complete control over the torquoselectivity.
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Table 1. Synthesis of 1-Silyl-1,3-dienes4 and10

a (PhMe2Si)2Cu(CN)Li2 (1.1 equiv), THF,-78 °C, 5 min, then Ac2O
(1.2 equiv), 0°C, 10 min.b Benzene, 80°C, 2 h. c PhMe2SiLi (1.1
equiv), THF,-78 °C, 5 min, then Ac2O (1.2 equiv),-78 °C, 10 min.
d Toluene, 110°C, 3 h.
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