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Receied March 12, 2001 To examine the effect of silicon on this rearrangement, substrate
57 was prepared by reaction ofh-Bu),Cu(CN)Li, with 2a

The synthesis of organic compounds with control over stereo- followed by treatment with acetic anhydride (eq 3). Unika

chemistry is a subject of continuing interest. As olefins are often

key starting materials for the construction of a wide variety of AcO
C

complex molecules, methods for synthesizing them as pure Acs0

geometric isomers are especially important. In this report, we (rBUlCUCNILy + 28 ———= — = Bu-n

describe a novel method for the stereoselective synthesis of 10 min Ph

functionalized 1,3-butadiene derivatives from cyclobutenones via 5 89%

a torquoselective electrocyclic ring-opening reaction of cy- fing-opening n-Bu Ph

clobutene intermediatés. T VP“ + VB“"’ (3)
This strategy emanates from our recent discovery of the mlene oo AGO

remarkable effect that silyl substituents have on the ring-opening 140°C,6n E6 99%  Z6

reaction of cyclobutenesA silyl substituent at the 3-position E6.26=4:1

accelerates the electrocyclic reaction, and inter alia promotes
inward rotation despite the resulting steric congestion experiencedcyclobutenes was unreactive even in refluxing toluene (1°10).
in the product. These intriguing effects were explained by the Ring-opening was observed at 120 to afford a mixture of-6

electron-accepting interactions between the low-lyifigrbital

of the silicon atom and the HOMO orbital of the opening

cyclobutene system, possible only in the inward transition State.
As shown in eq 1, the starting silyl-substituted cyclobutenes
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required for this strategy can be conveniently prepared from
cyclobutenone$® Addition of a silyl nucleophile, either in a 1,4-
or 1,2-fashion, provides an efficient route to 3-silyl-1-cyclobutene,
which opens up to isomeric functionalized 1,3-diene.

To effect the 1,4-addition, cyclobutenoBawas treated with
silylcupratel® at —78 °C for 5 min. The resultant 1,4-adduct was
trapped with acetic anhydride to afford 3-silyl-1-cyclobut&ae
in 83% yield (eq 2Y. When heated in refluxing benzene for 2 h,
3aunderwent a ring-opening reaction with unidirectional rotation
of the substituents. The silyl group rotated inward and the phenyl
group outwardlto furnish the 1-silyl-1,3-diene havirggeometry
4ain 99% vyield? The other stereoisomer was not detected.
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andZ-6." In this case, the butyl and phenyl groups competed for
outward rotatiorf. These results clearly demonstrate that the silyl
group of3a plays the dual role of accelerating the ring-opening
reaction and controlling the torquoselectivity.

We surmised that isomeric 3-silyl-1-cyclobutenes sucl8 as
could be obtained by the 1,2-addition of silyllithium reagents to
cyclobutenones. Reaction of cyclobuten@zewith silyllithium
7in THF at—78 °C followed by treatment with acetic anhydride
did not, in fact, provide the expected cyclobutene derivative.
Instead,2a was directly converted to a 1-silyl-1,3-diene having
Z-geometry 10a) in 87% vyield (eq 4Y. The other sterecisomer
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was not detected. Stereoselective formatioh@dwas explained
by assuming that the 1,2-addition Dfo the carbonyl group was
followed by immediate and torquoselective ring-opening of the
1,2-adduct8. The resulting lithium enolat® was trapped with
acetic anhydride to giv&0Oa a constitutional isomer ofa

As previously noted, the thermal ring-opening of cyclobutenes
3ais accelerated by the silyl substituent, but still requires heating
at 80°C. Therefore, the direct ring-opening reaction of intermedi-
ate 8 at —78 °C was quite remarkable. As a comparison,
butyllithium was reacted witRa. Unlike 8, the intermediate 1,2-
adductl11 failed to undergo a ring-opening reaction-af8 °C,
and after aqueous workup, cyclobuted@lwas obtained in 84%
yield (eq 5)7 However, when the reaction with butyllithium was
carried out at O°C, the intermediate 1,2-addutl did undergo
spontaneous ring-opening to give 1,3-didi3g64% yield) after
treatment with acetic anhydrideéOn the other hand, ring-opening
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of the isolated cyclobutendl2 occurred only after heating in
refluxing benzene. Nonconjugatfg-unsaturated ketoried was
obtained in 96% yield, suggesting outward rotation of the
hydroxyl group (eq 63}° Note this temperature with2 is still
considerably milder than that required for ring-openingof
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Ph o;;ienr%hg Ac0 nBu (5)
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12— | HO{ —3XY ©)
benzene
80°C, 12h Ph 18 96% "

These results demonstrated that an oxy substituent at the
3-position facilitates the ring-opening reaction and favors outward

rotation!! Both an anionic oxy substituent and a neutral hydroxyl
group are accelerating, but the former has a larger effect.

Therefore, the remarkably fast ring-opening reaction of inter-
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Table 1. Synthesis of 1-Silyl-1,3-diene$and 10

0, AcO, PhMe,Si SiMe,Ph
j;'\ ]E|»R2 / R A0
ROOR R'MessiPh AcO R R R
2/R,R? 3/%%  4/%° 10/%°
2b/H, n-Bu 3b/83  4b/98 10b /81
2c/H, tBu 3c/85 4c /96 10c /83
2d/ n-Pr, n-Pr 3d/85 4d/99? 10d /78

2 (PhMesSi),Cu(CN)Li; (1.1 equiv), THF,—78°C, 5 min, then AgO
(1.2 equiv), 0°C, 10 min.? Benzene, 8C°C, 2 h.cPhMeSiLi (1.1
equiv), THF,—78°C, 5 min, then AgO (1.2 equiv),—78°C, 10 min.
dToluene, 110°C, 3 h.

When the lithium enolat® was trapped with chlorosilane, a
1-siloxy-1-silyl-1,3-diene having-geometry {5) was obtained
in 88% yield (eq 7Y. Similar 1,3-dienes having-geometry can

7 MegSiCl _ SiMePh
2a [9] MesSI0— @)
THF, —78°C
5 min Ph
15 88%

be prepared by the allylsilane carbonylation described by Murai
and co-worker3? The stereochemistry observed in our reaction

mediate8 can be explained by the combined effects of the s complementary to the carbonylative method.

silyl substituent and the anionic oxy substituent, both placed at

Other examples of the stereoselective synthesis of 1-silyl-1,3-

the 3-position. Moreover, as the rotational preferences of both gienes4 and 10 from cyclobutenoneg are listed in Table 1.

substituents are matched, theisomer 9 is formed exclu-
sively.
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I., Paquette, L. A., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp-98385.

In conclusion, the highly functionalized 1,3-dienes are syn-
thesized as single isomers via the ring-opening of cyclobutenes,
which are conveniently prepared from cyclobutenones. The
success of the synthetic scheme arises from the substituents
located at the 3-position, which accelerate the ring-opening
reaction and provide complete control over the torquoselectivity.
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